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Prognostic nu,nerical models for atmospheric and oceanic circulations require initial

fields, boundary conditions, and forcing functions in addition to a consistent set of par-

tim differential equations, including a state relation and equations expressing conservation

of mass, momentum and energy. Depending on the horizontal domain to be modeled, the

horizontal boundary conditions are either physically obvious or extremely difficult to specify

consistently. If the entire atmosphere is modeled, periodic horizontal boundary conditions

are appropriate. On the other hand, the physical horizontal boundaries on the entire ocean

are solid walls. Obviously, the normal velocity at a solid wall is zero while the specification

of the tangential velocity depends on the mathematical treatment of the horizontal viscous

terms. Limitations imposed by computer capacity and cost, as well as research interests,

have led to the use of limited area models to study flows in the atmosphere and ocean.

The limited area models do not have physical horizontal boundaries, merely numerical ones.

Correctly determining these open boundary conditions for limited-area numerical models has

both intrigued and frustrated numerical modelers for decades.

One common approach is to use the closed or solid wall boundary conditions for a limited-

area model. The argument given for this approach is that the boundary conditions affect

flow near the walls but that none of these effects are propagated into the interior. Therefore,

one chooses a big enough domain that the central region of interest is not corrupted by the

boundary flow. Research in progress to model the North Atlantic circulation (J. D. Thomp-

son, private communication) vividly illustrates the pitfalls of this approach. The area covered

by the AtIantic Ocean model lies between longitudes 0 and 100W and between latitudes 60N

and 20S with the continental boundaries in place as appropriate and the" open water bound-
t

aries artificially closed. Two model runs are compared: (A) The southern boundary at 20S

between latitudes 0 and 40W is artificially closed and (B) the same boundary is specified

as open with an inward transport of 15 Sv (determined from a global model with the same

physics) uniformly spread across the boundary. Comparison of runs A and B shows sig-

nificant differences. For example, the maximum eddy kinetic energy (divided by the mean

density) is 700 cm2/sec 2 in run A while that for run B is 1900 cm2/sec 2. The Gulf Stream

in run B detaches from the eastern boundary of the United States at the correct latitude

of approximately 40N while the Gulf Stream in run A never truly flows along the eastern

boundary of the United States at all. The circulation in the tropics and along the eastern

boundary of South America also differs radically between the two runs. There are regions

in the two runs where there is no difference but such regions are small and of little interest,

i.e. they have very low eddy kinetic energy. These studies and others indicate that the inte-

rior flow of limited-area models can be dramatically affected by the incorrect use of closed

boundary conditions.
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A secondcommon approachis to "nest" the limited-area model inside of another nu-

merical model which covers a much larger domain. The outer domain model then supplies

the boundary conditions at tile open boundaries of the inner domain or limited-area model.

As an example, the North Atlantic model described above could have boundary information

supplied by a global ocean model which has physical, solid walls or closed boundaries. The

outer domain model usually has a larger time step and coarser mesh size than the inner

domain model. If the inner and outer domain models are described by the same differen-

tial equations and assumptions, then the nesting problem is homogeneous. Otherwise, the

nesting problem is heterogeneous. The nesting is described as two-way if information passes

from the outer domain to the inner domain and vice-versa. If the outer domain model passes

information to the inner domain but the inner domain information is not passed into the

outer domain, then the nesting is one-way. Oidy one-way nesting with a homogeneous sys-

tem of numerical models is presented here although future work with two-way (or coupled)

nesting and with heterogeneous model systems is planned.

In general, nesting involves two separate problems. The first is the interpolation of

information from a coarse mesh, outer domain, to a finer mesh, inner domain. The second

is the modification of the information supplied by the outer domain before it is applied to

the boundary of the inner domain. Much of the research done to date has not distinguished
between these two separate problems.

Linear interpolation is the easiest interpglation method to use. However, linear interpo-

lation alters the long wavelength information contained in the original fields and adds short

wavelengths that are not present at all in the original fields. Thus, linear interpolation alters

the energy distribution of the original fields. To avoid these problems, a variation of the

resampling method commonly used by engineers in the time-frequency domain (B.E. Eck-

stein, private communication) has been tested. A fast Fourier transform (D.N. Fox, private

communication) has been modified so that the output fields, after the inverse Fast Fourier

Transform, have the required fine grid mesh, although the input fields were supplied on the

coarse grid mesh. After testing, this technique was modified (A. Wallcraft, private com-

munication) to handle irregular coastal geometry, which also has to be interpolated. This

interpolation scheme has been used extensively with the Pacific Basin numerical models to

avoid the lengthy and expensive new spin-ups required whenever the mesh size is changed.

(Further discussion of the Pacific Basin research can be found in Hurlburt et al. [1]).

The effects of changing the mesh size are similar in many ways to those found by changing

the coefficient of horizontal eddy viscosity, AH. Therefore, in order to avoid interpolation

effects, the open boundary conditions are studies using models with different coefficients of

horizontal viscosity. There are three model runs to be considered here. The applied run is

made with the large outer domain and with a large value of AH. The nested run is made

with the small inner domain and a small value of AH. The true run is made with the large

outer domain and with a small value of AH. The boundary conditions applied on the open

boundaries of the small domain are taken from the matching grid points on the outer domain

and "adjusted" as described below.
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The numerical ocean model used for both the inner and outer domain is a reduced

gravity, one active layer, primitive equation model with the hydrostatic approximation used.

The fluid is assumed to be incompressible with uniform density in each layer. The effects

of the density difference between the two layers is ignored except when multiplied by the

earth's gravitational acceleration. The prognostic equations for the horizontal components

of momentum are written in transport form while the continuity equation is the prognostic

equation for the layer-depth of the upper, active layer. A spherical coordinate system is used

and the effects of the earth's rotation are included. For further details of these equations in

analytic form, see Hurlburt and Thompson [2]. This ocean model will be referred to as the

NOARL model.

The outer domain used is a rectangle. The wind forcing is analytic and drives a double

gyre in the ocean model. This choice permits the placement of the inner domain to isolate

various types of flow: normal or tangential to the open boundary, strong or weak, or flow

which changes along the open boundary either spatially or temporally (for time-varying

forcing). The work presented here has only one open boundary, either on the western or

northern boundary of the inner domain, and the other three boundaries are closed, matching

the outer domain.

The NOARL ocean model uses a staggered grid to increase the computational accuracy.

If solid walls (closed boundaries) are used, then the eastward velocity, u, and the northward

velocity, v are set to zero along the solid walls. It follows that the eastward transport, U,

and the northward transport, V, must be zero also on the solid walls. For solid walls, no

boundary condition for the layer depth, h, is required, needed. If a boundary is open,

then initial conditions for all five variables u, v, U, V, and h must be specified to obtain

a numerical solution. However, arbitrary specification of these five variables on the open

boundary will in general overspecify the solution. In general and in this research, if the

inner domain open boundary values are supplied directly from the outer domain with no

modification or adjustments, the inner domain model will eventually "blow up", much less

give the correct solution.

If the open boundary condition cannot be specified exactly, then the goal is to prevent

reflections at the open boundary which quickly destroy the interior solutions. Most nesting

work uses some combination of four basic techniques (Koch and McQueen [3]): blending,

filtering, damping, and radiation. Damping refers to an increase in the coefficient of eddy

viscosity near the open boundary. Filtering, which is used in many numerical models without

open boundaries, is the replacement of a calculated value at a given gridpoint with a weighted

combination of the calculated value and the surrounding values. Blending is the replacement

of the calculated prognostic term near the boundary of the inner grid with a combination of

the prognostic term from the inner grid and that from the outer grid. The radiation technique

(Sommerfeld [5] and Orlanski [4]) calculates the boundary values, assuming a wave is passing

through the boundary. The first three techniques tend to destroy the small scale structure

of the inner grid parameters which defeats the main purpose of running the inner grid with

increased horizontal resolution. The radiation technique tends to let the waves pass out but
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is limited by the problem of calculating the phase speed needed. The question arises as to

how the phase speed slmuld bc calculated if there are several types of waves present.

The goal of this research is to produce a nesting technique which does not destroy the

inner grid solution or reduce any improvements made in the solution by using the finer grid.

Therefore, no blending nor any additional damping or filtering has been used on the inner

domain. The radiation technique has been modified from that used by Sommerfeld [5] and

Orlanski [4]. The wave equation is used, not with an inner grid variable, but with a new

variable that is the difference between the inner domain and the outer domain variable, i.e.,

Q(inner) - Q(outer). The actual open boundary condition used on the open boundary is

the sum of the outer domain solution and the q found from the wave equation:

Oq/Ot t cOq/On = O,

where c is the phase speed and n is the direction normal to the boundary. The phase speed

used is determined from the mean outflow and the inflow phase speed is set to zero. The

mass exchange along the boundary is the same for the inner and outer domains.

The quality of the nesting technique is measured by how well the inner domain solution

(the nested run) compares with the true run (with the outer domain) solution. This difference

is compared to the difference between the true outer domain solution and the applied outer

domain solution. The first tests were done with steady forcing and nearly normal outflow.

For these cases the differences between the true and nested solution after a year are less than

five percent of the differences between the true and the applied solutions everywhere except

for a very small area near part of tile open boundary where the values go up to 20%. This

small portion of the open boundary is where both the non-normal flow is the largest and

the normal flow reverses sign. Note that this region is confined close to the boundary and

does not propagate into the interior of the inner domain. Model runs have been extended

for five years. Although the differences between true and applied runs increase with time,

the differences between the true and nested runs increase much more slowly. Therefore, the

percentages cited above actually decrease with longer model runs.

Ongoing research includes testing open boundaries with non-normal flow, strong jets,

and reversal of flow with time. Also, the nesting technique is being tested with actual ocean

models with irregular coastlines included. Specifically, a tropical Pacific Ocean model has

been nested into a Northern Pacific Basin Model for testing.

The results to date include:

• Open boundary conditions that can handle both inflow and outflow grid points.

• Phase speed selection is not crucial for regime tested.

• Horizontal interpolation is more critical than temporal interpolation.
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• Five-year nested model runs have been completed.

• Strong tangential flows require both modified h and non-normal treatment of phase

speed.

• Differences in variable values between true and nee'ted runs are, in general, less than

5% of those between true and applied runs.
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